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Abstract —A full-wave analysis technique for generalized artisotropic

layered media based on a 4x 4 field matix method is applied to calculate

the propagation constant of a number of micros,triplike transmission

structures. This technique is very versatile, and allows simultaneous per-
mittivity, permeability, and optical activity anisotropy. Data for higher

order modes of single and coupled stip lines in isotropic layered media in

the millimeter-wave region are presented. New dispersion data for both

low- and high-anisotropy dielectric layered strnctores are generated for

different principal axis crystallographic orientations.

I. INTRODUCTION

L
AYERED STRUCTURES with general complex an-

isotropy cannot be handled by a transverse resonance

approach (TRA) [1] or approaches which specialize anisot-

ropy to particular cases such as magnetic birefringence.

The transverse resonance approach, for example, is an

acceptable method for isotropic layers or very simple an-

isotropic layers with carefully chosen principal axis orien-

tation. A properly oriented uniaxial crystal could be

analyzed by an extension of the TRA [2]1. A much more

powerful technique is available [3] which describes the

fields by four-element field vectors and employs a 4x 4

matrix in the spectral domain. This matrix method can

allow simultaneous permittivity, permeability, and optical

activity anisotropy. The displacement field vector can gen-

erally be described by both a permittivit~y tensor and an

optical activit y‘ tensor. Likewise, the magnetic displace-

ment vector can generally be described by a permeability

tensor and an optical activity tensor. Each layer is char-

acterized by a single constant 6 X 6 macroscopic tensor.

The ability to handle arbitrary materials with varying

degrees of anisotropy is an important facet of the method.

This capability includes accounting for principal axes

crystallographic rotation on each layered material’s con-

stitutive tensors [4] by incorporating this information into
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each 6 X 6 macroscopic tensor. Although much analytic

and numerical effort- has been devoted-previously in ‘the

literature to finding the behavior of uniaxial lossless dielec-

tric guided-wave structures under quasi-static conditions,

some work has been done in the area of fully dynamic

dispersive studies [5]. Relatively recent studies of broad-

side-coupled strip lines [6] and single microstrip lines and

bilateral finlines [7] using uniaxial substrates perform

numerical dispersion studies with crystallographic permit-

tivity principal axis rotation for the fundamental modes. ~

No studlies to our knowledge treat dispersion for the higher

order modes under rotation. The fundamental modes as

well as the higher order modes were found by tracing the

mode curves from either the cutoff frequency or some

point along the a –/3 diagram. A contour integration pro-

cedure is used, whenever it is needed, to verify that a

particular root is, in fact, a real solution or zero of the

determinant.

In this paper we provide numerical results for single and

coupled microstrip line on an isotropic substrate as well as

on a low- and high-anisotropy dielectric material. The

propagation constant y for propagating waves (y= – jf3)

is given for different principal axis crystallographic orien-

tations O of the permittivity tensor. This is done for the

fundamental and higher order even and odd modes.

II. ANALYSIS

Consider the multilayer structure shown in Fig. 1, in

which each layer is characterized by a single 6 x 6 macro-

scopic tensor ~ representing the permittivity ~, permeabil-

ityy ~, and optical activh y tensors ~ and ~. An arbitrary

number of perfectly conducting strips with zero thickness,

equal width, and the same periodic spacing are assumed at

the interfaces between two consecutive layers. Analysis of

an open or a closed bilateral structure (having either

perfect electrical walls [pew] or perfect magnetic walls
[prow]), is the same up to the final step of generating the

elements of the final truncated matrix. The difference is

that the integration for the open structure is carried out

with respect to continuous spectral wave number a along
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Fig. 1, Anisotropic layered media inside a shielded structure.

the x direction, while a summation for discrete spectral

numbers is used for the finite enclosed structure. In the

following analysis, pew’s are assumed to be spaced b from

the plane of symmetry to avoid the dimensional contour

integration (and surface wave excitation), which is nor-

mally more difficult to perform than carrying out the

summation.

A. Basic Equations

Assume that the propagation constant of the guided

structure is y and that the fields are time harmonic with

dependence eJW’. The Maxwell equations in the vector

form are

vXiF=-ja2 (1)

(2)

where the volume source currents within any layer are

assumed to be zero, All the field components have the

same propagation factor e ‘Jut– YZ ) along the + z direction

of propagation, but for simplicity the time dependence will

be dropped out through the analysis. The Fourier trans-

form domain (FTD) fields are defined by taking the one-

dimensional finite Fourier transform as

where the tilde - denotes the Fourier transform, and a.

are discrete and equal to (2 n – 1) n-/2b or n n/b for even

or odd modes, respectively. Maxwell equations (l), (2) can

be rewritten as [3]

where the Q operator is expressed as

(4)

-.
and the left and the right column vectors +~, $~ contain

the electric and magnetic field components

$,= [-E. E, E, @x g, H,]’

JR= [fix fi, 5: ~x ~, j,]’. (6)

Each medium is characterized by a single 6 X 6 constitutive

tensor M

& = A’& [’ IM= ~,
6

(7)
P;”

When (7) is substituted into (4), a linear system of coupled

differential equations for the independent field compo-

nents is obtained:

ti& = jaM$~. (8)

Two ~quations of the system (8) can be used to express ~flj,

and HP in terms of the other components of the vector +~.

This process leads to the matrix differential equation

(9)

where the vector @ is the four-element transformed field

vector containing fields tangential to the interface

6= [ix i= Hx E=]’ (lo)

and R is a 4 X 4 matrix whose elements are function of o,

a,,, y, and the medium properties M. Equation (9) is in the

form of the state equations of a linear system [8], with the

state vector ~ and the state matrix A = jcoR. Equation (9)

holds for the field components in each layer of the struc-

ture and has, in general, four distinct eigenvalues and four

corresponding eigenvectors. The eigenvalues represent the
propagation constants k,,, i =1,2,3,4, while each eigen-

vector provides the ratio between the elements of the

vector ~. This equation is general, and leads to special

cases. For example, if ~ is used for uniaxial material, the

four coupled linear differential equations of (9) reduce to

the fourth-order differential equation of [9] with the same

eigenvalues.

In the i th layer, the solution of (9) can be expressed as

@(y:) =P(y;)@(o) (11)

where P ( y:) is the state transition matrix of the i th layer

given by

P(y~)=eA’: (12)

and @(0) is the state vector at the interface y; = O, i.e., at

the bottom of the i th layer. The state transition matrix P

is 4 X 4 and is recognized as a transformation operator

which transforms the field from y; = O to the field value at

y: within the i th layer.
The transformation operator P(y) can be calculated by

first finding the transverse eigenvalues k,, of A and then

applying the Cayley–Hamilton theorem [8] to the matrix

A. As is shown in Appendix I, P(y) can be expressed as(5)

,=0
(13)
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In general, the eigenvalues may be degenerate. The un-

known coefficients ai, which are functions of y, can be

found by solving the system of linear equations

~kt,.v = ~ ~.k’
I YJ9

j=l,2!,3,4. (14)
,=0

For the case of repeated (degenerate) eigenvalues, the

derivatives of (14) are applied, For exalmple, for the iso-

tropic case we have two distinct eigenvalues of multiplicity

m = 2 each. Equation (14) turns out to be

lU2!lEl=12i’
B. Boundary Conditions

Equation (11) relates the field components at any point

within the i th layer to their value at the boundary of that

region (y; = O).

The boundary conditions applied at the interface y = h,

in the Fourier transform domain are

fix(12,: )- fix(h; )=-J~ (16a)

fiz(hy)-ll, (h, )=~. (16b)

~~ and jX are the unknown Fourier-transformed x and z

current components at y = h,. The tangential electrical

field components ~,, ~X must be continuous along the

interface. The + and – superscripts in (16) denote, re-

spectively, just above and below the interface y = hi. The

boundary conditions could be expressed in the vector form

11’

o“

&(h:)=@(h; )+ _} . (17)

<

C. Green’s Functions and the Moment Melhod

The formulation for two dielectric media with current

strips located at the interface will be derived here for

demonstration. Generalization to multidielectric layers with

several current strip interfaces is a straightforward proce-

dure that follows the derivation here. The vector field

& (h;) can be related to @(O) through the transformation

operator P of (11), i.e.,

@(h;) =Ptl)(hl)@(0). (18)

The boundary conditions (17) at the interface y = hl could

be written as

,[]

o

fi(h~) =P(lJ(hl)@(0)+ _; . (19)

~~

Again, P(2)(h z) transforms the field vector ~(h~ ) just

1401

above the interface y = h ~ to give the field vector at the

top plane y = hl + h ~ such that

r 01

@(h1+h2) =P~2)(hz)P@(h1) @(0)+Pf2J(h,) .; .~.

Using

P(l)(h,),

rewritten

(20)

the abbreviation P(21)(h1 i- h2) = P(2)(h2)

where P ’21) is a 4 X 4 matrix, (20) could be

as

rol rOl

H
o
0
L . (21)+P(2)(h2) _~

P,(O), ~,(o), fi,(hl + h2), and fl,(hl + hz) are the
tangential magnetic fields at the ground and top plate,

respectively. Note that the boundary conditions at y =

h z + hl have already been satisfied in (21). From (21) we

can express fiX(0), ~z(0), in terms of ~X, ~. Also from the

first and second row of (19) we can express the slot field

~X(hl), E,(hl) in terms of ~X(0), ~z(0), as in Appendix 11.
The resulting relationships define the impedance-type

Green’s function G in the FTD which relates the field

components at the interface to the interface currents at

y=hl:

~X(n) ==dll(y, n)~(n)+ 612(y, n)~(n) (22a)

iZ(n) =G21(y, n)~(n)+ Gz’(y, n)~(n) (22b)

where the elements ~ij are given in Appendix II. For the

three-layer structure shown in Fig. 4, the above procedure

is still alpplied, with some relevant replacements given also

in Appendix II.

Expanding the strip currents in (22) in terms of suitable

basis functions and using a Galerkin-like approach, a

determinantal equation for the propagation constant can

be written based on the fact that the current expansion

coefficients are not a trivial null set. For example, for n,

strips the following expansions were employed for even

modes (see derivation in Appendix 111):

+ bi~sin(a.s, )~fl, (n)l (23a)

+ d,J sin(a.sJ)fie, (n)]. (23b)



1402 IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. MTT-35, NO. 12, DECEMBER 1987

4

Fig. 2. Coupled microstrip lines

For odd modes, the expansions were

+ bijcos(ansj)$oi(l?)]

+dij SiIl(cqsj)fioi(~)]

(24a)

(24b)

where n ~, ==n$/2, (n. – 1)/2 for even and odd number of
strips n ~ respectively, and n,, n, are the number of basis

functions for ~ and ~X. Here the spacing factor Sj is the

distance from the origin to the center of the jth strip and

a,, = (2 n – 1) 7r/2 b, n ~/b for even and odd modes, respec-

tively. The quantities ~~, ~0, fig, ijO are single microstrip

even and odd basis functions of J: and ~X, respectively

[10].

D. Rotation around the Principal Axis

To investigate the effect of misalignment, rotations of

the principal axes are performed [4]. Propagation proper-

ties in the rotated system are easily obtained using the

above-described method, provided the proper transformed

constitutive tensor kf is used. Consider the principal axis

rotation shown in Fig. 2, where a rotation is made around

the z axis through an angle d, i.e., in the transverse plane.

Let us assume that Ox’, Oy’, Oz are the principal axes with

[1

(100
2=0620. (25)

00(3

In the xyz system we have

-[ 1

E xx c
X.V

o
i = (“x fyv o (26)

o 0 c==

where

c
xx =czsin2(0) +clcos2 (0)

e~Y=E2cos 2( f3)+clsin2(c9)

622=63

c
XY

=cyX=(62- cl)sinOcostl. (27)

The effect of varying the rotation angle 0 can thus be

obtained systematically when the above transformation

tensor is used in the previous formulation.

III. NUMERICAL RESULTS

In the numerical search for the zeros of the determinan-

tal equation, it is often necessary to determine whether a

certain contour contains any zeros, and if so, how many.

Such a determination can be done using a contour integra-

tion procedure. Thk method makes use of the principle of

argument formula:

(28)

N and P are the number of zeros and poles of the

determinant D inside the contour c, respectively. Here

D( /3) is an analytic function within the contour except at

its poles. This contour integration method is very powerful

and useful in determining the location of the zeros and

their degree (degenerate modes) if the locations of the

poles are given.

Convergence behavior has been tested and is demon-

strated in Fig. 3 (the parameters employed being c1 = ~~ =

9.4, 62= 11.6, substrate thickness hl = 0.5 mm and_h2 = 4.5

mm, with w/hi = 0.5) by showing the variation of B =/l/k.

(k. = free-space wavenumber) versus spectral number n. It

is seen that 70 spectral terms are reasonable for accurate

solution and fast computation. Tables I and II give ~ at

three frequencies for varying basis function number on

each strip and show that agreement between the ~ values

is at the fourth digit, leading us to use only the n ~, n, =

(1, 1) for effici~t computation.

Numerical ~ results are presented in Fig. 4 for sus-

pended coupled microstrip over an isotropic substrate. The

solution for even higher order modes on a single rnicrostrip

line with the same parameters given in reference [11]

agrees closely with the results in [11]. Because alumina,

silicon, GaAs, and many other common materials used in

hybrid and monolithic circuits have dielectric constants c,

on the order of 10, we study the particular case c,= 9.35

and the dimensions found in the literature [12]. Results for

the higher order modes, of interest in millimeter-wave

applications, up to 35 GHz are presented in Fig. 4(a) and

(b) for even and odd modes of suspended coupled micro-

strip, respectively. These results were also checked with the

method described in [1] and agreement was within a few

percent. The parameters used for Fig. 4 are hl = h ~ = 4.5

mm, hz =l.O mm, w = wl=l.O mm, 2b = 20 mm, c,= 9.35,

and c,1 = ~,3 = 1.0. For the dominant even and odd modes,

agreement between our method and reference [12] is within

a few percent.



,MOSTAFA el (J]... NUMERICAL SPECTRAL MATRIX METHOD 1403

Fig. 3. ~ versus spectral number n. hl = 0.5 rein, h2 = 4.5 mm with

w/hi = 0.5 for the fundamental even mode [15].

TABLE I
ODD MODES FOR THE PARAMETERS USED IN FIG. 5

TABLE II
WEN MODES FOR THE PARAMETERS USED ris FIG. 5

,

Data have been generated for single andl coupled micro-

strip line structures which employ anisotropic sapphire

substrates. Since sapphire has only a moderate degree of

anisotropy (about 21 percent), data are also gatheredl on an

interesting stibstrate material which has much higher an-

isotropy (about 40.4 percent), . pyrolytic boron nitride
(PBN). This material originally stimulated interest because

it had reasonable characteristic line impedance [13] for

integrated circuit applications and might enable even- and

odd-mode phase velocity differences to be reduced in

coupled line structures [13], [14]. Single &nd coupled line

structures using PBN were, studied in terms of material

properties, predicted electrical behavior, and measured

performance [14], and may be useful for hybrid integrated

circuits.

For single microstrip lines over sapphire, agreement

between our results and [15] having a bilateral open 5truc-
ture for the cases where 2,w/h =1, 2, and 4 is within 0.5

percent when the side wall width (2b) is ten times the

substrate thickness (h J. For coupled microstrip over sap-

phire, the even and odd fundamental mode dispersion

results agree within 1 percent with [2]. PBN dispersion

, & — ——.———

2 “L
_*<: ~gT____

Ill

o 5 10

0
3- r - ----- -- -—-—---

F(GHz)

(a)

.

,<.. ...+ . ..._+_ j

F(GHz)

5 ;0 15 20 ;5 30 35

(b)

Fig. 4. (a) Dispersion curves(~– F) for evenmodes.hl = h3 =_4.5mm,

h2=l mm, w=wl=lmm, c, = 9.35. (b) Dkpersion,curves (/3-F) for

odd modes. h,= h3 = 4.5 mm, h2 =1 mm, w = WI =1 mm, c.== 9.35.

curves for coupled microstrip for even and odd modes up

to 20 GHz are shown in Fig. 5. The parameters used were

tl = C3=: 5.12, Cq= 3.40, 2W =1.5 mm, 2W1 =1.5 mm, sub-

strate thickness hl = 1.5 mm, h ~ = 3 mm, and, ‘M= 8.5
mm. Notice tliat the first higher order mode is even.

Numerical results have been checked by varying d

against the tpasi-static data available in the literature [16],

with gobd agreement, as shown in Fig, 6. The parameters

used were el = C3= 40, C2=10, w = W1=0.5 hl, hz/hl= 2,

and frequency F = 1 GHz. For the same configuration as

in Fig. 2, j versus frequency is plotted in Fig. 7 as a

function of 0, for the fundamental mode at F= 10 and 20

GHz. The parameters used we~e the same as those in Fig.

5. Dispersion curves showing J3 versus frequency up to 40

GHz for 8 =’0°, 45°, and 90° are given in Figs. L1O,
respectively, with the same parameters m in Fig. 5. The

following principal axes (diagonal) relative, permittivity

tensor elements were used [14]: c1 = ES= 5.12, <z= 3.14.

For the even fundamental mode, ~ shifts by a maximum

of 20 percent relative to@ at O = O. Cutoff frequency ~C for
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Fig. 5. Dispersion curves (~-F) for coupled strip lines over PBN
substrate. hl =1.5 mm, hz = 3 mm, 2b = 8.5 mm, w = WI = 0.75 mm.

---=-+---+-------1--------4‘[deg)
0 20 40 60 80 100

Fig. 6. Dispersion curves (~-O) for coupled strip lines for the funda-
mental modes. c1 = C3= 40, (2 =10, w = WI = 0.5/rl, h2/hl = 2, and
F = 1 GHz.

V(deg.)

Fig. 7, Dispersion curves (j – d ) for the fundamental modes. hl = 1.5
mm, hz = 3 mm, w = WI = 0.75 mm, and2b =8.5 mm.

0 10 20 30 40

F(GH+

Fig. 8. Dispersion curves (~-F) for even and odd modes for O = 0°.
Same parameters as in Fig. 7.

‘“’-j-”---”--lT
——1

— ,“,. mod,
--- oddmode I

o 1’0 2’0 30 40

Fig. 9. Dispersion curves (~-F) for even and odd modes for 0 = 45”.
Same parameters as in Fig. 7.

the higher even order modes is insensitive to 6 variation,

except for the third higher order mode (fourth mode),

which changes by 2 GHz when 6 changes from 0° to 90°.

The effect of changing d from 0° to 90° is to increase the

coupling between the 2nd and the 3rd modes, and to

decrease the coupling between the 3rd and 4th modes. No

significant fundamental-to-lst mode coupling is observed

due to either frequency or 0 variation. However, at fre-

quencies higher than 40 GH_z this coupling may be appre-

ciable. For the odd modes, ~ shifts by a maximum of ’18%,
for the fundamental mode, relative to ~ at d = O. For

6’ = 45° and 90° a new 4th mode appears. This mode

shows increasingly coupling to the 3rd mode as 19increases

beyond 45°.

Behavior of ~ on geometrical parameters is shown in

Figs. 11 –13 for specific @cases for the fundamental mode.

Fig. 11 gives the dependence of ~ on the height of the top

plate h ~/h ~. Beyond h ~/hl = 2, ~ varies little. Fig. 12

displays the ~ dependence on the strip_width 2 w/hi. A

similar plot is given in Fig. 13 showing /3 versus the strip

spacing 2w1/hl.
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0 10 20 30 40

F(GHz)

Fig. 10. Dispersion cutyes (~– F) for even and odd modes for 6’= 90°.

Same parameters as in Fig. 7.

!3

l.65— ——

. . . -------- ---

,.” oddmode
,,

1,60

1.55 1

d-L-LLJk2/1
0 1 2 3 4

Fig. 11. Variation of ~ with hz /hl for 0 = 0° for coupled microstnp
lines over PBN substrate for the fundamental modes. w = WI=

0.25hl, hl =1.5 mm, F= 20 GHz.

2’2T--
2.0

k

0:0 0,2

I ! ---Ioddmode

“- {-- ““”” t“ ““””’” 1
L 0:6 0.8 1.0 1

2w/h,

Fig. 12. Variation of ~ with 2 w/hi for 9 = 0°, 90° for coupled micro-

strip lines over PBN substrate for the fundamental modes. 2 WI /hl =
0.5, hk =1.5 mm, 2b= 8.5 mm, ~= 20 GHz, and k,l = 3 mm.

‘-9+9-+--+

, 1405

0.0 0.2 0.4 0,6 0.8 1.0 1.2

Fig. 13. Variation of ~ with 2 wl/hl for 8 = 0°, 90° for coupled

microstrip lines over PBN substrate for the fundamental modes. 2 w/hi

= 0.5, hl =1.5 mm, 2b=8.5 mm, F= 20 GHz, and hz = 3 mm.

IV. CONCLUSIONS

Numerical implementation of a general 4 X 4 matrix

technique to firnd the propagation characteristics of strips
immersed in either isotropic or anisotropic media has been

demonstrated. The accuracy of the implementation has

been checked and found to agree with the previous calcula-

tions for some special cases. Numerical results for a highly

anisotropic layered structure are presented. The effect of

changing rotation angle 0 on the dispersion behavior of

the fundamental and higher order even and odd modes

was provided. Although data presented in this paper dealt

only with the propagation characteristics in generalized

anisotmpic multilayered media, characteristic impedance

computation is also possible using the same formulation.

This can be done by calculating the currents on the con-

ductors and the power flow in the structure.

APPENDIX I

The characteristic polynomial of an n X n matrix is

defined as

A(A) =IA– AII

=(- A)”+ C~_lA”-l+ . ..+ CIA+ CO=O. (Al)

This equation is satisfied by the eigenvalue Ai. Now if

P(A) is a scalar polynomial of degree m and PI(A) is

another polynomial of degree n where n <m, then P(A)

can be written as

P(A) =Q(A)P1(A)+ R(A). (A2)

The quotient Q(A) is a polynomial of degree of m – n and

the remainder polynomial R(A) is of degree of n – 1. If we

choose 1?(A) to be any analytic function and PI(A) to be

the characteristic polynomial, then

P(Ai]=R(At). (A3)

This is the Cayley-Hamilton theorem, which states that

everv matrix satisfies its own characteristic eauation. that. .
is,

A(A) = [0]. (A4)
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Making use of the above theorem (A4) and using a matrix

function argument in (A3), one can express any analytic

function of a matrix P(A) as

P(A) =aoI+a1A+a2xt2+ “ o“ +an_lA”-l. (A5)

The coefficients a, are the same for the corresponding

eigenfunction equation

PAR =ao+al~i+az~~+ o“. +an_lN-l.

(A6)

If the n eigenvalues are distinct; we get n independent

algebraic equations that determine the coefficients a i.

However if we have repeated eigenvalues A, of a multiplic-

ity order of m,, then we have dJ/dAJ A(A) IA, = O, where

j < m; therefore

dJR(~) djP(A)

d~l ~ = d~J ~’

j=l,. . . ,m, –1. (A7)

We obtain a m, set of linearly independent equations for

A, from (A7); and thus a full set of n equations is always

available to find ai. If we choose P(A) = e~~, where A is

4 x 4, with repeated eigenvalues Al of multiplicity ml= 2,

then (A6) becomes

ueklY

yeA’y.

eh2y “
eksy

APPENDiX II

From (21)’ we have

fir(o) =[f,(PJfl)q;) – P&)P$) )

– f (P#)P# – I’&P.# )] /det

E, (o) = [~ ( Pgl)l’g) – P&)Pf;) )

– $( P#)P#) – P#l)Pf$) )] /det

where det = P#JP$l) – P~~l)P&). Also from (19)

Ex( h,)= Pfyilx(o) + qjtiz(o)

s= ( hl) = P#Hx(o) + qpii=(o) .

(A8)

(A9)

(A1O)

(All)

(A12)

Combining (A9), (A1O), (All), and (A12), we end up with

the Fourier-transformed Green’s function G:

Gll = [ P# ( P#)P& – P[:l)PJj )

( )1+ P& P#)P& – P.#)P{~) /det

G12 = – [ P/:)( P#)P#) – PyP# )

(2) – P#)P# )] /det+ Pf~) ( l’#)P23

G21 = [@( P$l)P& – PJ:l~P$) )

(2) - P#)P&)]/det+ P&)( PpP24

G22 = – [ Py ( P#)Pf;) – P$l)P& )

+ P.$) ( Pjfl)P# – P#)P# ) ] /det (A13)

where P~mJ denotes the Q element of m matrix, m =1, 2,

or 21 defined in the text.

For the three-layer structure, PI1)(hl) is replaced

by P(21) = P(2)(h2)P(1)(lz1) and P(2)(Iz2) is replaced

by P(3)(h3). Also P(21)(Iz1 + h~) is replaced by P(31) =

P (3)( h 3)P (2)(11z)P(l)(hl). Making use of these replace-

ments and substituting into (A13) leads to the Green’s

function for the three-layer structure.

The currents Jz, JX

writ ten as

~.s

J:(x)= ~

APPENDIX III

over any number of strips can be

{a,f’e,(~)+~j$o,(~)]
,=1

n ss

+ Z {cj~e,(x)+‘j’$o,(x)} (A14)
j-l

J.(x) = i {e,~o,(x)+j~e,(x))
~=~

n.,

+ ~ (gJ~O, (x)+‘J~.,(x))- (A15)
J=l

The quantity n,$ is already defined in the text. The first

sum term in (A14) and (A15) accounts for those strips with

x >0, while the second sum term accounts for the strips

with x <0. The quantities .$?,,CO,,q.,, TO, are even and odd

z and x basis current functions over the ~’th strip, respec-

tively. The following discussion applies to the even-mode

case. We have

J=(X) =JZ(– X) JX(X) = –<.(–x) (A16)

which results in

a~ = c1 bJ = d] e] = gJ and &=-h,.

(A17)

The basis function $,,(x), for example, can be expressed as

‘&(x)=&(x-s J) (A18)

where s, is the spacing between the plane of symmetry and

the center of the jth layer. By expressing the other basis

functions in the same form, J,, JX could be rewritten from

(A14) and (A15) as

Jz$.
J,= ~ aJ[&,(x -~,)+ $,(x+ s~)]

,=1

+bj[&o( x–s, )–$o(x+s,)] (A19)

~zs.!
<X= ~ 6?, [~o(x-sJ) +?Jo(x+sJ)]

,=1

+~[Te(x –s,)–’ne(x+sJ)]. (A20)

If the Fourier transforms are taken for both sides of

(A19) and (A20), the currents JX and ~. can be expressed

in the Fourier transform domain. It is easy to show that

~.(x~s,)=e~’”$$,. (A21)
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Identical transformation forms occur fo,r the other basis

functions. Applying the Fourier transform to (A19) and

(A20) and making use of the Fourier shifting relationship

(A21), one gets

j=l

(A23)

Equations (A22) and (A23) are considered for only one

basis function for J,, JX over each strip. A summation has

to be added if more than one basis function is considered,

as in (23) and (24) in the text.

The same procedure as above shonld be applied to the

odd-mode case.
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