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Numerical Spectral Matrix Method for
Propagation in General Layered Media:
- Application to Isotropic and
Anisotropic Substrates

AYMAN A. MOSTAFA, STUDENT MEMBER, IEEE, CLIFFORD M. KROWNE, SENIOR MEMBER, IEEE,
AND KAWTHAR A. ZAKI, SENIOR MEMBER, 1EEE

Abstract —A full-wave analysis technique for generalized anisotropic
layered media based on a 4x 4 field matrix method is applied to calculate
the propagation constant of a number of microstriplike transmission
structures. This technique is very versatile, and allows simultaneous per-
mittivity, permeability, and optical activity anisotropy. Data for higher
order modes of single and coupled strip lines in isotropic layered media in
the millimeter-wave region are presented. New dispersion data for both
low- and high-anisotropy dielectric layered structures are generated for
different principal axis crystallographic orientations.

I. INTRODUCTION

AYERED STRUCTURES with general complex an-
isotropy cannot be handled by a transverse resonance
approach (TRA) [1] or approaches which specialize anisot-
ropy to particular cases such as magnetic birefringence.
The transverse resonance approach, for example, is an
acceptable method for isotropic layers or very simple an-
isotropic layers with carefully chosen principal axis orien-
tation. A properly oriented uniaxial crystal could be
"analyzed by an extension of the TRA [2]. A much more
powerful technique is available [3] which describes the
fields by four-element field vectors and employs a 4 x4
matrix in the spectral domain. This matrix method can
allow simultaneous permittivity, permeability, and optical
activity anisotropy. The displacement field vector can gen-
erally be described by both a permittivity tensor and an
optical activity tensor. Likewise, the magnetic displace-
ment vector can generally be described by a permeability
tensor and an optical activity tensor. Each layer is char-
acterized by a single constant 6 X 6 macroscopic tensor.
The ability to handle arbitrary materials with varying
" degrees of anisotropy is an important facet of the method.
This capability includes accounting for principal axes
crystallographic rotation on each layered material’s con-
stitutive tensors [4] by incorporating this information into
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each 6X6 macroscopic tensor. Although much analytic
and numerical effort has been devoted previously in the
literature to finding the behavior of uniaxial lossless dielec-
tric guided-wave structures under quasi-static conditions,
some work has been done in the area of fully dynamic
dispersive studies [5]. Relatively recent studies of broad-
side-coupled strip lines [6] and single microstrip lines and
bilateral finlines [7] using uniaxial substrates perform
numerical dispersion studies with crystallographic permit-
tivity principal axis rotation for the fundamental modes.
No studies to our knowledge treat dispersion for the higher
order modes under rotation. The fundamental modes as
well as the higher order modes were found by tracing the
mode curves from either the cutoff frequency or some
point along the w-B diagram. A contour integration pro-
cedure is used, whenever it is needed, to verify that a
particular root is, in fact, a real solution or zero of the
determinant. ‘
In this paper we provide numerical results for single and
coupled microstrip line on an isotropic substrate as well as
on a low- and high-anisotropy dielectric material. The
propagation constant y for propagating waves (y = — jB)
is given for different principal axis crystallographic orien-
tations # of the permittivity tensor. This is done for the
fundamental and higher order even and odd modes.

II. ANALYSIS

Consider the multilayer structure shown in Fig. 1, in
which each layer is characterized by a single 6 X 6 macro-
scopic tensor M representing the permittivity €, permeabil-
ity fi, and optical activity tensors p and p’. An arbitrary
number of perfectly conducting strips with zero thickness,
equal width, and the same periodic spacing are assumed at
the interfaces between two consecutive layers. Analysis of
an open or a closed bilateral structure (having either
perfect clectrical walls [pew] or perfect magnetic walls
[pmw]), is the same up to the final step of generating the
elements of the final truncated matrix. The difference is
that the integration for the open structure is carried out
with respect to continuous spectral wave number a along

0018-9480,/87 /1200-1399$01.00 ©1987 IEEE



1400

! Electric wall

. |
. yor magnetic wall
. |
| .
m
I
_?*_ b ) |
l v !

I z=b
T

Anjsotropic layered media inside a shielded structure.

Fig. 1.

the x direction, while a summation for discrete spectral
numbers is used for the finite enclosed structure. In the
following analysis, pew’s are assumed to be spaced b from
the plane of symmetry to avoid the dimensional contour
integration (and surface wave excitation), which is nor-
mally more difficult to perform than carrying out the
summation.

A. Basic Equations

Assume that the propagation constant of the guided
structure is v and that the fields are time harmonic with
dependence e/“'. The Maxwell equations in the vector
form are

(1)
(2)

where the volume source currents within any layer are
assumed to be zero. All the field components have the
same propagation factor e/“~Y?) along the + z direction
of propagation, but for simplicity the time dependence will
be dropped out through the analysis. The Fourier trans-
form domain (FTD) fields are defined by taking the one-
dimensional finite Fourier transform as

flayy)= [ 1, y)ero d

VX§=~jw§
VXﬁ=jw5

(3)

where the tilde ~ denotes the Fourier transform, and a,
are discrete and equal to (2n —1)7/2b or nw/b for even
or odd modes, respectively. Maxwell equations (1), (2) can
be rewritten as [3]

Q(SL =J “"?ER (4)
where the € operator is expressed as
- 0 4
- ¥ dy
~ 0 Q, ~ i
Q= ~ Ql = -~y 0 — Jja, (5)
- Ql 0 d
- jan 0
L |
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and the left and the right column vectors ¢, ¢ contain
the electric and magnetic field components

~ ~1T

d, ]

‘;Lz[ﬁx Ey Ez Hx
$=[D. b, D, B. B, B

(6)

Each medium is characterized by a single 6 X 6 constitutive

tensor M
] o
p

When (7) is substituted into (4), a linear system of coupled
differential equations for the independent field compo-
nents is obtained:

[ YT

‘SR = M‘J;L

R ia-11

Q‘;L = jqu;L' (8)
Two equations of the system (8) can be used to express ﬁ),
and H, in terms of the other components of the vector ¢,.
This process leads to the matrix differential equation
@ _. R® (9
e
o )
where the vector ® is the four-element transformed field
vector containing fields tangential to the interface
=[E. E A H] (10)
and R is a 4 X4 matrix whose elements are function of w,
«,, v, and the medium properties M. Equation (9) is in the
form of the state equations of a linear system [8], with the
state vector ® and the state matrix 4 = joR. Equation (9)
holds for the field components in each layer of the struc-
ture and has, in general, four distinct eigenvalues and four
corresponding eigenvectors. The eigenvalues represent the
propagation constants k., i=1,2,3,4, while each eigen-
vector provides the ratio between the elements of the
vector ®. This equation is general, and leads to special
cases. For example, if € is used for uniaxial material, the
four coupled linear differential equations of (9) reduce to
the fourth-order differential equation of [9] with the same
eigenvalues.
In the ith layer, the solution of (9) can be expressed as

& (y))=P(y)0(0) (11)

where P(y/) is the state transition matrix of the ith layer
given by

P(y/)=e (12)
and ®(0) is the state vector at the interface y/ =0, i.e., at
the bottom of the ith layer. The state transition matrix P
is 4x4 and is recognized as a transformation operator
which transforms the field from y, = 0 to the field value at
y, within the ith layer.

The transformation operator P( y) can be calculated by
first finding the transverse eigenvalues &k, of A and then
applying the Cayley—Hamilton theorem [8] to the matrix
A. As is shown in Appendix I, P(y) can be expressed as

3
P(y)= Y adA. (13)

=0
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In general, the eigenvalues may be degenerate. The un-
known coefficients a;, which are functions of y, can be
found by solving the system of linear equations

ekuy

= ak’

k3 (14)
For the case of repeated (degenerate) eigenvalues, the
derivatives of (14) are applied, For example, for the iso-
tropic case we have two distinct eigenvalues of multiplicity
m =2 each. Equation (14) turns out to be

j=1,2,3,4.

]
Lt

H

1k, kh o ky ||ao ekny

0 1 2k, 3ky21 a | yekny (15)
1k, k% k3, |la ekrr |

0 1 2%k, .”kyz2 a, yekry

B. Boundary Conditions

Equation (11) relates the field components at any point
within the ith layer to their value at the boundary of that
region (y, = 0).

The boundary conditions applied at the interface y = 4,
in the Fourier transform domain are

H (b )= H(h]) == 1], (16a)
H(h{)-H,(h)=1J. (16b)

J, and J, are the unknown Fourier-transformed x and z
current components at y=h,. The tangential electrical
field components E,, E, must be continuous along the
interface. The + and — superscripts in (16) denote, re-
spectively, just above and below the interface y = h,. The
boundary conditions could be expressed in the vector form

®(n;)=d(h;)+ (17)

S o0

C. Green’s Functions and the Moment Method

The formulation for two dielectric media with current
strips located at the interface will be derived here for
'demonstration. Generalization to multidielectric layers with
several current strip interfaces is a straightforward proce-
dure that follows the derivation here. The vector field
®(h7) can be related to ®(0) through the transformation
operator P of (11), i.e.,

® (k) = PO (hy)2(0). (18)

The boundary conditions (17) at the interface y = h; could
be written as

Lo

B(hi)=PO(n)®O)+| _ 7| (19)
A

Again, P®(h,) transforms the field vector ®(h;") just

T n
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above the interface y = h; to give the field vector at the
top plane y = h, + h, such that

®(hy+hy) = PA(hy) PO(hy)B(0)+ PO(hy)| _

g&l :k‘l oo

(20)

Using the abbreviation P@V(h, + h,) = PP(h,)
PMO(h ), where P@D is a 4xX4 matrix, (20) could be
rewritten as

0 0
O 21) 0
BB+ hy) =Pt ha)| A (0)
ﬁz(hl+h2) ﬁz(o)
0
0
+PO(h,)| _j | @)
T

H (0), H/0), H(h,+hy), and H,(h,+h,) are the
tangential magnetic fields at the ground and top plate,
respectively. Note that the boundary conditions at y=
h, + h, have already been satisfied in (21). From (21) we
can express H. (0), H, (0), in terms of J J Also from the
first and second row of (19) we can express the slot field
E (), E (h) in terms of H (0), H.(0), as in Appendix II.
The resulting relationships define the impedance-type
Green’s function G in the FTD which relates the field
components at the interface to the interface currents at

y=h
E.(n)= G~11(77 ”)J;(”) +Gy (v, n)J(n) (22a)
Ez(") = (;21(% ”)J;(”) + ézz(Ya ")J;(n) (22b)
where the elements G, , are given in Appendix IL. For the
three-layer structure shown in Fig. 4, the above procedure
is still applied, with some relevant replacements given also
in Appendix II.

Expanding the strip currents in (22) in terms of suitable
basis functions and using a Galerkin-like approach, a
determinantal equation for the propagation constant can
be written based on the fact that the current expansion
coefficients are not a trivial null set. For example, for n,

strips the following expansions were employed for even
modes (see derivation in Appendix III):

2: X [ 05 008, ()

+ byysin(a,s, )€, (n)] (23a)
(>=[ cos (a5, ()

+d,, sin(a,s,)7,,(n)]. (23b)
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Fig. 2. Coupled microstrip lines.

For odd modes, the expansions were

L) = L % [a,sin(a,5)E(n)

| +b,-jcos(a,,sj)£~gi(n)] (24a)
j:x(n) = Agssl g‘l [cijcos(ansj)ﬁei(n)
+d,;sin(a,s;),:(n)] (24b)

where n, =n_/2, (n,—1)/2 for even and odd number of
strips n respectively, and #n,, n, are the number of basis
functions for fz and J; Here the spacing factor s, is the
distance from the origin to the center of the jth strip and
a,=(2n—1)m/2b,nw/b for even and odd modes, respec-
tively. The quantities £,,£ ,%,,%, are single microstrip
even and odd basis functions of J, and J, respectively
[101].

D. Rotation around the Principal Axis

To investigate the effect of misalignment, rotations of
the principal axes are performed [4]. Propagation proper-
ties in the rotated system are easily obtained using the
above-described method, provided the proper transformed

constitutive tensor M is used. Consider the principal axis

rotation shown in Fig. 2, where a rotation is made around
the z axis through an angle @, i.e., in the transverse plane.
Let us assume that Ox’,0y’,0z are the principal axes with

¢ 0 0
é,: 0 52 0 (25)
0 0 e

€xx exy 0
€= Ex €y 0 (26)
0 0 ¢
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where
€., =¢,8in*(8)+ e cos? (6)
€,,=€,¢08%(8)+ ¢ sin’(4)
Ezz =€y

(27)

The effect of varying the rotation angle # can thus be
obtained systematically when the above transformation
tensor is used in the previous formulation.

€, =¢,,=(e;—¢)sinfcosd.

ITI. NUMERICAL RESULTS

In the numerical search for the zeros of the determinan-
tal equation, it is often necessary to determine whether a
certain contour contains any zeros, and if so, how many.
Such a determination can be done using a contour integra-
tion procedure. This method makes use of the principle of
argument formula:

D'(B) .

%D(B) dp = j2m(N - P). (28) |
N and P are the number of zeros and poles of the
determinant D inside the contour ¢, respectively. Here
D() is an analytic function within the contour except at
its poles. This contour integration method is very powerful
and useful in determining the location of the zeros and
their degree (degenerate modes) if the locations of the
poles are given.

Convergence behavior has been tested and is demon-
strated in Fig. 3 (the parameters employed being ¢, =€, =
9.4, €, =11.6, substrate thickness #; = 0.5 mm and h, =45
mm, with w/h; = 0.5) by showing the variation of 8 = 8/k,
(ko = free-space wavenumber) versus spectral number 7. 1t
is seen that 70 spectral terms are reasonable for accurate
solution and fast computation. Tables I and IT give B at
three frequencies for varying basis function number on
each strip and show that agreement between the 8 values
is at the fourth digit, leading us to use only the n_,n, =
(1,1) for efficient computation.

Numerical B results are presented in Fig. 4 for sus-
pended coupled microstrip over an isotropic substrate. The
solution for even higher order modes on a single microstrip
line with the same parameters given in reference [11]
agrees closely with the results in [11]. Because alumina,
silicon, GaAs, and many other common materials used in
hybrid and monolithic circuits have dielectric constants e,
on the order of 10, we study the particular case ¢, = 9.35
and the dimensions found in the literature {12]. Results for
the higher order modes, of interest in millimeter-wave
applications, up to 35 GHz are presented in Fig. 4(a) and
(b) for even and odd modes of suspended coupled micro-
strip, respectively. These results were also checked with the
method described in [1] and agreement was within a few
percent. The parameters used for Fig. 4 are h;=h;=4.5
mm, 7, =1.0mm, w=w; =1.0 mm, 2b = 20 mm, ¢, = 9.35,
and ¢, =¢,; =1.0. For the dominant even and odd modes,
agreement between our method and reference [12] is within
a few percent.
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oo, F=80GHzZ . .
T F=20GH: |
2.8 f—TT i 1 [ i A A R I 1 N Y B "1 .
0 50 . 100 150 200
‘ spectral number n
Fig. 3. B Versus spectral nuniber n. k,=0.5 mi, h,=4.5 mm with
w/h; = 0.5 for the fundamental even mode [15].
. TABLE I
Opp Momas FOR THE PARAMETERS USED IN F16.5
. ﬂ for different (nz,nz)

F(GHz) (L1 (1,2) (2,1) (2,2)

2 2.5177 2.5176 2.5179 2.5176

10 . 2.6946 2.6947 2.6947 2.6946

20 ©2.9927 2.9921 2.9928 2.9921

 TABLEII
EvEN MODES FOR THE PARAMETERS UsEp IN FIG. §
B for different (nz,nz) .
F(GHz) (1,1) {1,2) 21 (2,2)

2 2.6884 2.6883 2.6886 2.6882

10 3.0412 3.0408 ©3.0412 3.0406-

20 3.2046 3.2031 . 3.2047 ~3.2031

Data have been generated for single and coupled micro-
strip line structures which employ anisotropic sapphire
substrates. Since sapphire has only a moderate degree of
anisotropy (abouit 21 percent), data are also gathered on an
interesting substrate material which has much higher an-
isotropy (about 40.4 percent), pyrolytic boron nitride
(PBN). This material originally stimulated interest because
it had reasonable characteristic line impedance [13] for
integrated circuit applications and might enable even- and
odd-mode phase velocity differences to be reduced in
coupled line structures [13] [14]. Single dand coupled line
structures using PBN were studied in terms of material
properties, predicted electrlcal behavior, and measured
performance [14], and may be useful for hybrid integrated
circuits.

For single microstrip lines over sapp]nre agreement
between our results and [15] havmg a bilateral open $truc-
ture for the cases where 2w/h =1, 2, and 4 is within 0.5
percent when the side wall width (2b) is ten times the
substrate thickness (4,). For coupled microstrip over sap-
phire, the even and odd fundamental mode dispersion
results agree within 1 percent with [2]. PBN dispersion
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Fig. 4. (a) Dispersion curves (B— F) for even modes. h; = hy = 4.5 mm,
hy=1mm, w=w; =1 mm, ¢, =935. (b) Dispersion.curves (8- F) for
odd modes. Ay =h; =45 mm, h, =1 mm, w=w; =1 mm, ¢, =9.35.

curves for coupled microstrip for even and odd modes up
to 20 GHz afe shown in Fig. 5. The parameters used were
€, =€;=5.12, ¢, =3.40, 2w =1.5 mm, 2w; =1.5 mm, sub-
strate thickness #,=1.5 mm, h,=3 mm, and 2b 8.5
mm. Notice that the first higher order mode is even.
Numerical results have been checked by varymg 4
agalnst the quasi-static data available in the literature [16],
with goo'd agreement, as shown in Fig. 6. The parameters
used were €; =e; =40, ¢, =10, w=w,; =05 h, h, /by =
and frequency F=1 GHz. For the same conflguratlon as
in Fig. 2, B versus frequency is plotted in Fig. 7 as a
function of @, for the fundamental mode at F =10 and 20
GHz. The parameters used were the same as those in Fig.
5. Dispersion curves showing 8 versus frequency up to 40
GHz for 8 =10°;, 45°, and 90° are given in Figs. 8-10,
respectively, with the same parameters as in Fig. 5. The
following principal axes (diagonal) relative permittivity
tensor elements were used [14]: €, =e€3=3. 12, €;=3.14.
For the even fundamental mode, 8 shifts by a maximum
of 20 percent relative to B at 6=0. Cutoff frequency f, for
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Fig. 5. Dispersion curves (§~F) for coupled strip lines over PBN
substrate. Ay =1.5 mm, h, =3 mm, 20 = 8.5 mm; w=wy = 0.75 mm.
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Fig. 6. Dispersion curves (8~8) for coupled strip lines for the funda-
mental modes. ¢ =¢; =40, ¢, =10, w=w, =05hy, h, /h; =2, and
F=1GHz.

2.28 - . - e e o e . ,]

|
~F=10 GHz |

£

d 7 — , | F=20Ghe
L ,,m,j I

\,

even mode

=" odd mode T

1.4 b T - - N T
0 20 40 60 80 100

e

(deg.)

Fig. 7. Dispersion curves (B-0) for the fundamental modes. 4, =1.5
mm, 2, =3 mm, w=w, =0.75 mm, and 25 = 8.5 mm.
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Fig. 8. Dispersion curves (8- F) for even and odd modes for 8 = 0°.
Same parameters as in Fig. 7.

B
2.5 S e — - —
1 — even mode i
- ~-- odd mode ]
2.0 T =
1.8 o —
4
1.0 ;h*—“—
]
0.5
00— T [ T T T T e e | F(GHz)
0 10 20 30 40

Fig. 9. Dispersion cutves (8- F) for even and odd modes for § = 45°.
Same parameters as in Fig. 7.

the higher even order modes is insensitive to @ variation,
except for the third higher order mode (fourth mode),
which changes by 2 GHz when 8 changes from 0° to 90°.
The effect of changing 0 from 0° to 90° is to increase the
coupling between the 2nd and the 3rd modes, and to
decrease the coupling between the 3rd and 4th modes. No
significant fundamental-to-1st mode coupling is observed
due to either frequency or @ variation. ‘However, at fre-
quencies higher than 40 GHz this coupling may be appre-
ciable. For the odd modes, B shifts by a maximum of 18%,
for the fundamental mode, relative to 8 at #=0. For
6=45° and 90° a new 4th mode appears. This mode
shows increasingly coupling to the 3rd mode as § increases
beyond 45°.

Behavior of 8 on geometrical parameters is shown in
Figs. 11-13 for specific 8 cases for the fundamental mode.
Fig. 11 gives the dependence of B on the height of the top
plate h,/h,. Beyond h,/h,=2, B varies little. Fig. 12
displays the B dependence on the strip width 2w/h,. A
similar plot is given in Fig. 13 showing 8 versus the strip
spacing 2w, /. ’
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Fig. 10. Dlsperswn curves (B~ F) for even and odd modes for 8 = 90°.
Same parameters as in Fig. 7.
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]
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0 1 2 3 4
Fig. 11. Variation of 8 with s /h; for 8 = 0° for coupled microstrip
lines over PBN: substrate for the fundamental modes. w=w, =
0.25hy, Ay =1.5 mm, F=20 GHz.
B
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l 8§ = 90° 4
4 ——
2.0—\—‘ : — |
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8 = g0°
1.8 I —
T i 2w/hy
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Fig. 12. Variation of B with 2w/h; for 8 = 0°, 90° for coupled micro-
strip lines over PBN substrate for the fundamental modes. 2w /h; =
0.5, h;=1.5 mm, 25 =8.5 mm, F=20 GHz, and /4, =3 mm.
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Fig. 13. Variation of B8 with 2w, /h, for 6=0° 90° for coupled
microstrip lines over PBN substrate for the fundamental modes. 2w/h,
=0.5, hy=1.5 mm, 2b=8.5 mm, F =20 GHz, and 4, =3 mm.

IV. CONCLUSIONS

Numerical implementation of a general 4Xx4 matrix
technique to find the propagation characteristics of strips
immersed in either isotropic or anisotropic media has been
demonstrated. The accuracy of the implementation has
been checked and found to agree with the previous calcula-
tions for some special cases. Numerical results for a hlghly
anisotropic layered structure are presented. The effect of
changing rotation angle  on the dispersion behavior of
the fundamental and higher order even and odd modes
was provided. Although data presented in this paper dealt
only with the propagation characteristics in generalized
anisotropic multilayered media, characteristic impedance
computation is also possible using the same formulation.
This can be done by calculating the currents on the con-
ductors and the power flow in the structure.

APPENDIX |
The characteristic' polynomial of an »Xn matrix is
defined as
AN)=14—-AT
=(=AN)"+C,_ A"+ - +CA+C,=0. (A1)
This equation is satisfied by the eigenvalue. A,. Now if
P()) is a scalar polynomial of degree m and P(A) is
another polynomial of degree n where n <m, then P(X)
can be written as
P(A)=Q(A)P (M) +R(N). (A2)
The quotient Q(A) is a polynomial of degree of m — n and

“the remainder polynomial R(X) is of degree of n —1. If we

choose P(A) to be any analytic function and P,(A) to be
the characteristic polynomial, then

P(A)=R(A,). (A3)

This is the Cayley-Hamilton theorem, which states that
every matrix satisfies its own characteristic equation, that

A(4)=[0]. (A4)
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Making use of the above theorem (A4) and using a matrix
function argument in (A3), one can express any analyuc
function of a matrix P(A) as
P(Ad)y=ayl+aAd+a,A%+ -+ +a, ;A""1. (AS)
The coefficients a, are the same for the corresponding
eigenfunction equation
P(A)=R(\)=ay+a +alo+ - +a, N1
(A6)
If the n eigenvalues are distinct; we get n independent
algebraic equations that determine the coefficients a,.
However if we have repeated eigenvalues A, of a multiplic-
ity order of m,, then we have d//dN A(A)[, =0, where
Jj < m; therefore
d’/R(\)
dN

We obtain a m, set of linearly independent equations for
A, from (A7); and thus a full set of n equations is always
available to find a,. If we choose P(A4) = e4? where A is
4x 4, with repeated eigenvalues A; of multiplicity m, = 2,
then (A6) becomes

d’P(\)
AN

, j=1,---,m,—1. (A7)

A A

1 A A N la eMy

0 1 2x, 3N ||« _ yeh (AB)
1 A, A A | a, ehy |

1A, 2 N ey | | e
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From (21) we have

H.(0) = [J(PROPR - PRVPY)
~ L(PGOPR — PGOPP)]| /det  (A9)
4,(0) = [J,(PGYPR - PEYPQD)
— L (PGOPY — PEOPR)| /det  (AL0)
where det = PGVPSEY — pGUPID. Also from (19)
E (k) = PQH (0)+ PPH,(0) (A11)
E.(h) = PPH (0)+ PYH,(0). (A12)

Combining (A9), (A10), (Al11), and (A12), we end up with
the Fourier-transformed Green’s function G:

Gy = [PQ(PEOPD - PEOPY)
+ PR(PEUPR — PEVPR)] /det
G =~ [PY(PEPY ~ PEPY)
+ PO(PROPY ~ PEOPY)] /der
= [P@(PZOPP - PGYPY)
+ PP(PEYPR — PEOPD)] /det
G == [P (PROPQ - PEOPY)

+ PP(PEOPY ~ PEOPR)| /det  (A13)

IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. MTT-35, NO. 12, DECEMBER 1987

where P{"™ denotes the ij element of m matrix, m =1, 2,
or 21 defined in the text.

For the three-layer structure, PW(h,) is replaced
by P = P®(h,)PO(h,) and PP(h,) is replaced
by PO(h,). Also P®(h, +h,) is replaced by PGV =
PO(h)P®(h,)PV(h,). Making use of these replace-
ments and substituting into (A13) leads to the Green’s
function for the three-layer structure.

APPENDIX 11

The currents J,, J, over any number of strips can be
written as

530 = ¥ (g, ()5,

55

+ E‘, (et (x)+dé,(x)} (A14)
J(x) = ;{eno,(xm;ne,(x)}
E {gn, () +hm, (x)}. (A15)

The quantity n, is already defined in the text. The first
sum term in (A14) and (A15) accounts for those strips with
x > 0, while the second sum term accounts for the strips
with x < 0. The quantities £, , Eo s Te,» Mo, ATE EVED and odd
z and x basis current functions over the jth strip, respec-
tively. The following discussion applies to the even-mode
case. We have

J(x) = (= x)

which results in

J(x)==J(=x) (Al6)

a,=c b,=d, e,=g, and

J

f,=—h,
(A17)

The basis function £ ej(x), for example, can be expressed as
g, (x)=£(x—s) (A18)

where s, is the spacing between the plane of symmetry and
the center of the jth layer. By expressing the other basis
functions in the same form, J, J, could be rewritten from

(A14) and (Al5) as

J.=Ya

J=1

JE(x=5)+E(x+5,)]

+b[&,(x=s)—&,(x+5)] (A19)
>: [m (=) + 7, (x+5)]
+fj[ne(x ~s,)—n.(x +sj)]. (A20)

If the Fourier transforms are taken for both sides of
(A19) and (A20), the currents J, and J. can be expressed
in the Fourier transform domain. It is easy to show that

E(xxs)=et/muf, (A21)
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Identical transformation forms occur for the other basis
functions. Applying the Fourier transform to (A19) and
(A20) and making use of the Fourier shifting relationship
(A21), one gets

J(n)= 2_: ajcos(oc,,sj)ge(n)+bjsin(ozn j)f (n) (A22)
Fn) = 2 cjc0s ), () dy im ()5 ().
(A23)

Equations (A22) and (A23) are considered for only one
basis function for J,, J, over each strip. A summation has
to be added if more than one basis function is considered,
as in (23) and (24) in the text.

The same procedure as above 'should be applied to the
odd-mode case.
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